Please note that the copy function is not enabled for this field.
If you wish to
modify
existing outcomes, please copy and paste the current outcome text into the Update field.
LOGIN
CREATE ACCOUNT
LOGIN
CREATE ACCOUNT
MY TRIALS
REGISTER TRIAL
FAQs
HINTS AND TIPS
DEFINITIONS
Trial Review
The ANZCTR website will be unavailable from 1pm until 3pm (AEDT) on Wednesday the 30th of October for website maintenance. Please be sure to log out of the system in order to avoid any loss of data.
The safety and scientific validity of this study is the responsibility of the study sponsor and investigators. Listing a study does not mean it has been endorsed by the ANZCTR. Before participating in a study, talk to your health care provider and refer to this
information for consumers
Download to PDF
Trial registered on ANZCTR
Registration number
ACTRN12616000791437
Ethics application status
Approved
Date submitted
11/04/2016
Date registered
17/06/2016
Date last updated
23/08/2018
Type of registration
Retrospectively registered
Titles & IDs
Public title
The effects of a chiropractic care in recent stroke patients - Study 1/2
Query!
Scientific title
The effects of a chiropractic care on functional outcomes, somatosensory processing and motor control in patients who have suffered from a recent stroke - Study 1/2
Query!
Secondary ID [1]
288959
0
None
Query!
Universal Trial Number (UTN)
U1111-1181-7292
Query!
Trial acronym
Query!
Linked study record
Query!
Health condition
Health condition(s) or problem(s) studied:
Stroke
298332
0
Query!
Condition category
Condition code
Stroke
298449
298449
0
0
Query!
Ischaemic
Query!
Intervention/exposure
Study type
Interventional
Query!
Description of intervention(s) / exposure
The intervention is a single session of chiropractic care for the intervention group. The session will take approximately ten minutes. The entire spine and both sacroiliac joints will be assessed for vertebral subluxation, and adjusted where deemed necessary, by a registered chiropractor. The clinical indicators that will be used to assess the function of the spine prior to and after each chiropractic adjustment session include assessing for tenderness to palpation of the relevant joints, manually palpating for restricted intersegmental range of motion, assessing for palpable asymmetric intervertebral muscle tension, and any abnormal or blocked joint play and end-feel of the joints. All of these biomechanical characteristics are used by the chiropractors as clinical indicators of vertebral subluxations. All of the spinal adjustments carried out in this study will be high-velocity, low-amplitude thrusts to the spine or pelvic joints. These are standard adjustment techniques used by chiropractors. The mechanical properties of this intervention has been investigated; and although the actual force applied to the subject's spine depends on the chiropractor, the patient, and the spinal location of the adjustment, the general shape of the force-time history of spinal adjustments is very consistent and the duration of the thrust is always less than 200 milliseconds. The high velocity type of adjustments chosen specifically because previous research has shown that reflex electromyographic activation observed after adjustments only occurred after high velocity, low amplitude adjustments (as compared with lower velocity mobilizations). This adjustment technique has also been previously used in studies that have investigated the neurophysiological effects of chiropractic care. Within 30 minutes of receiving the intervention the participant will be reassessed using the same outcome measurement procedures. The participants will then be reassessed after a 7 day washout period with the alternate intervention applied between pre/post assessments.
Query!
Intervention code [1]
294438
0
Rehabilitation
Query!
Comparator / control treatment
The control is a single session. The subject’s head and/or spine will be moved in ways that include passive and active movements, similar to what is done by the chiropractor that provide actual chiropractic care during the experimental intervention. Thus this control intervention involves the subject being moved into the adjustment setup positions similar to how the chiropractor would normally setup a subject prior to applying the thrust to the spine to achieve the adjustment. No spinal adjustments will be performed during any control intervention. This control intervention is intended to act as a sham treatment session as well as to act as a physiological control for possible changes occurring due to the cutaneous, muscular or vestibular input that would occur with the type of passive and active movements involved in preparing a subject/patient for an adjustment.
Query!
Control group
Active
Query!
Outcomes
Primary outcome [1]
297935
0
The primary outcome measure will be changes in absolute maximum force of contraction (strength). Muscle force will be measured using an isometric strain gauge (Model MLP100 transducer Techniques Tennecula California USA) mounted on a custom-built platform. This device will be used to record maximum isometric plantarflexion force. The subjects will perform three progressive maximum voluntary contractions (MVCs) of the ankle plantar flexors of 5 s duration each, separated by a minimum of 2-min rest. Subjects will be verbally encouraged to produce maximal force. The highest plantar flexor EMG activity during MVC and absolute force measured in each experimental or control session will be used for analysis and to compute the submaximal target contraction levels for H and M-recruitment curve recordings.
Query!
Assessment method [1]
297935
0
Query!
Timepoint [1]
297935
0
Immediately pre and post spinal manipulation session and immediately pre and post control intervention.
Query!
Secondary outcome [1]
322684
0
- TUG (including 5times sit to stand test (5XSST) and 10m walk)
The TUG is a widely used test of basic functional mobility that is sensitive to change and is suitable for the assessment of stroke patients. The TUG involves participants standing from a seated position, walking 3 meters, turning around and returning to sit in the chair. The time to complete this task is recorded using a stopwatch
Query!
Assessment method [1]
322684
0
Query!
Timepoint [1]
322684
0
Immediately pre and post spinal manipulation session and immediately pre and post control intervention.
Query!
Secondary outcome [2]
323946
0
- Rate of change of force (power), Measured with isometric strain gauge
Explosive strength has been quantified as the contractile rate of force development (RFD), and contractile impulse (CI), during a maximal isometric contraction. Contractile RFD is quantified from the slope of the force- (or torque) time curve. CI is quantified from the integral of the force- (or torque) time curve. CI is identical to the kinetic impulse, or angular momentum, reached during limb movement and therefore directly determines the rotational angular velocity of the distal segment at a given time point. RFD and CI will be calculated based on the slope of the force-time curve and integral of the force-time curve associated with the MVC’s that are performed during the strength assessment.
Query!
Assessment method [2]
323946
0
Query!
Timepoint [2]
323946
0
Immediately pre and post spinal manipulation session and immediately pre and post control intervention.
Query!
Secondary outcome [3]
323947
0
- Change in median frequency of power (fatigue)
The development of fatigue in a muscle can be observed either by amplitude and spectral analysis of EMG recordings or absolute force values. We will measure both in our proposed study. The time-dependent shift in mean power frequency (MPF) of electromyographic (EMG) signals to lower frequencies during the fatigue process is a well-established phenomenon. To measure fatigue in this project EMG recorded during the MVC pre and post manipulation session or control intervention will be used. MVC data segments will be epoched offline and processed in Matlab using purpose written scripts. A fast Fourier transformation (FFT) will be performed and the mean power frequency (MPF) calculated as the frequency (Hz) center of the spectrum.
Query!
Assessment method [3]
323947
0
Query!
Timepoint [3]
323947
0
Immediately pre and post spinal manipulation session and immediately pre and post control intervention.
Query!
Secondary outcome [4]
323950
0
- Change in h-reflex and M-wave (spinal changes), measured with EMG
While the subject is performing a low-level tonic contraction of the plantar flexors (10% MVC) the direct motor response (M wave) and H reflex of the soleus muscle (SOL) will be elicited. Subjects will be provided with online feedback of the contraction level exerted, which will be displayed on a computer monitor which can be clearly seen by the subject. To get the maximum peak-to-peak amplitude of the M wave, subjects will be stimulated progressively by increasing the current intensity in 5mA increments. A total of three trials at each current intensity will be recorded. Then, at each current intensity, the preceding M-wave peak-to-peak amplitude will be compared with the new M-wave peak-to-peak amplitude. Once the preceding M-wave peak-to-peak amplitude and new M-wave peak-to-peak amplitude has reached a plateau over the three trials, the current intensity of the previous stimulation will be considered the maximum current intensity. To construct the M and H recruitment curves, the maximum intensity will be divided into 16 segments that will be equally separated. For each current intensity, a total of 5 stimuli will be delivered at random time intervals between 2 and 3 s. The subjects will also be given the opportunity to pause the experiment at any time if they report fatigue.
Query!
Assessment method [4]
323950
0
Query!
Timepoint [4]
323950
0
Immediately pre and post spinal manipulation session and immediately pre and post control intervention.
Query!
Secondary outcome [5]
323951
0
- Change in v-wave (cortical), measured with EMG
The subjects will be asked to perform 5 MVCs of 5 s duration, with 2 min of rest in between prior to and post spinal adjustments or control interventions. During the progressive contraction, 5 supramaximal stimulus (130% of the current needed to evoke maximal M wave; 1-ms square pulse) will be applied to the tibial nerve at the instant that the force exceeded 90% of the MVC.
Query!
Assessment method [5]
323951
0
Query!
Timepoint [5]
323951
0
Immediately pre and post spinal manipulation session and immediately pre and post control intervention.
Query!
Eligibility
Key inclusion criteria
15-20 participants will be recruited to participate in each of these studies. Participants will be inpatients or outpatients at Shifa International Hospital, in Islamabad or Railway Hospital, Rawalpindi, Pakistan. To be eligible to participate volunteers must have suffered from a stroke at least 8 weeks prior to their involvement in the trial and have some ongoing neurological deficit. For study 1 they must have a neurological deficit in at least 1 lower limb but have the ability to contract their soleus muscle on command.
Query!
Minimum age
18
Years
Query!
Query!
Maximum age
No limit
Query!
Query!
Sex
Both males and females
Query!
Can healthy volunteers participate?
No
Query!
Key exclusion criteria
Volunteers will be ineligible to participate if they exhibit no evidence of spinal dysfunction, have absolute contraindications to spinal manipulation, have experienced previous significant adverse reactions to chiropractic care, or if they are deemed unsuitable to receive chiropractic care by their treating physicians.
Query!
Study design
Purpose of the study
Treatment
Query!
Allocation to intervention
Randomised controlled trial
Query!
Procedure for enrolling a subject and allocating the treatment (allocation concealment procedures)
Query!
Methods used to generate the sequence in which subjects will be randomised (sequence generation)
Query!
Masking / blinding
Blinded (masking used)
Query!
Who is / are masked / blinded?
The people analysing the results/data
Query!
Query!
Query!
Query!
Intervention assignment
Crossover
Query!
Other design features
Query!
Phase
Not Applicable
Query!
Type of endpoint/s
Efficacy
Query!
Statistical methods / analysis
Query!
Recruitment
Recruitment status
Completed
Query!
Date of first participant enrolment
Anticipated
Query!
Actual
7/04/2016
Query!
Date of last participant enrolment
Anticipated
Query!
Actual
5/05/2016
Query!
Date of last data collection
Anticipated
Query!
Actual
13/05/2016
Query!
Sample size
Target
15
Query!
Accrual to date
Query!
Final
12
Query!
Recruitment outside Australia
Country [1]
7797
0
Pakistan
Query!
State/province [1]
7797
0
Islamabad, Pawalpindi
Query!
Funding & Sponsors
Funding source category [1]
293311
0
Other
Query!
Name [1]
293311
0
New Zealand College of Chiropractic
Query!
Address [1]
293311
0
New Zealand College of Chiropractic
6 Harrison Road
Mount Wellington
Auckland 1060
Query!
Country [1]
293311
0
New Zealand
Query!
Primary sponsor type
Other
Query!
Name
New Zealand College of Chiropractic
Query!
Address
New Zealand College of Chiropractic
6 Harrison Road
Mount Wellington
Auckland 1060
Query!
Country
New Zealand
Query!
Secondary sponsor category [1]
292122
0
None
Query!
Name [1]
292122
0
Query!
Address [1]
292122
0
Query!
Country [1]
292122
0
Query!
Ethics approval
Ethics application status
Approved
Query!
Ethics committee name [1]
294785
0
Riphah International University in Islamabad
Query!
Ethics committee address [1]
294785
0
7th Ave Islamabad - Pakistan
Query!
Ethics committee country [1]
294785
0
Pakistan
Query!
Date submitted for ethics approval [1]
294785
0
28/03/2016
Query!
Approval date [1]
294785
0
05/04/2016
Query!
Ethics approval number [1]
294785
0
Query!
Summary
Brief summary
Stroke is one of the leading causes of death and disability in the world. It is estimated that worldwide 17 million people per year suffer from a significant stroke with 5 million of those people experiencing long term physical disability following the stroke. The long term impaired nervous system function that accompanies many strokes means millions of stroke survivors around the world are reliant on care-givers to assist them with rudimentary activities of daily living such as bathing, dressing, and toileting. The burden of care is immense and has a significant impact on modern society. Numerous rehabilitative approaches have been shown to promote motor recovery after a stroke, but advanced strategies are constantly being developed and tested in an attempt to improve long term outcomes for stroke survivors. One possible intervention that may improve post-stroke motor recovery, but has to date not been adequately tested, is chiropractic care. Over the past two decades numerous research studies have shown that chiropractic care can significantly influence central neural function. Studies have shown changes in somatosensory processing, sensorimotor integration and motor control following as little as a single session of chiropractic adjustments. Sensorimotor integration is the ability of the central nervous system (CNS) to integrate sensory information from different body parts and formulate appropriate motor outputs to muscles. Effective sensorimotor integration is essential when learning new motor skills, or recovering from an injury. Another essential component for accurately movement, learning new motor skills, and/or recovering from an injury is the accuracy of internal representation of our body map, or body schema. It is essential for your brain to be accurately aware of the location of our limbs and core body in 3D space. The spine is linked biomechanically and neurologically to the limbs and yet, we know very little about how altered sensory feedback from the spine affects limb sensorimotor integration and motor performance. However, there is emerging evidence that altered spinal sensory input can alter central neural processing, possibly by impacting the brains inner body schema. There is also emerging evidence that improving spinal function with chiropractic care can rapidly alter central neural function in a variety of ways, and that these changes outlast the altered changes of input, i.e. that they are neural plastic changes. Neural plasticity is the name given by neuroscientists to any lasting change in structure or function within the CNS due to alterations in sensory input, basically the brain’s ability to learn and adapt to an ever-changing environment. The addition of chiropractic care to the treatment program for a variety of central nervous system disorders, such as stroke victims, may have a profound impact on these peoples’ ability to heal and recover central neural function.
Query!
Trial website
Query!
Trial related presentations / publications
Query!
Public notes
Query!
Contacts
Principal investigator
Name
65046
0
Dr Imran Niazi
Query!
Address
65046
0
New Zealand College of Chiropractic
6 Harrison Road Mount Wellington Auckland 1060
Query!
Country
65046
0
New Zealand
Query!
Phone
65046
0
+6495266789
Query!
Fax
65046
0
Query!
Email
65046
0
[email protected]
Query!
Contact person for public queries
Name
65047
0
Kelly Holt
Query!
Address
65047
0
New Zealand College of Chiropractic
6 Harrison Road Mount Wellington Auckland 1060
Query!
Country
65047
0
New Zealand
Query!
Phone
65047
0
+6495266789
Query!
Fax
65047
0
Query!
Email
65047
0
[email protected]
Query!
Contact person for scientific queries
Name
65048
0
Kelly Holt
Query!
Address
65048
0
New Zealand College of Chiropractic
6 Harrison Road Mount Wellington Auckland 1060
Query!
Country
65048
0
New Zealand
Query!
Phone
65048
0
+6495266789
Query!
Fax
65048
0
Query!
Email
65048
0
[email protected]
Query!
No information has been provided regarding IPD availability
What supporting documents are/will be available?
No Supporting Document Provided
Results publications and other study-related documents
Documents added manually
No documents have been uploaded by study researchers.
Documents added automatically
No additional documents have been identified.
Download to PDF